Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 7564-7577, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35579536

RESUMO

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Gases , Tecnologia de Sensoriamento Remoto
2.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341119

RESUMO

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d-1 ⋅ km-2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.


Assuntos
Poluentes Atmosféricos/análise , Ozônio , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Poluição do Ar , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Humanos , Modelos Teóricos , Monoterpenos/análise , Cidade de Nova Iorque , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Odorantes/análise , Densidade Demográfica , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/química
3.
Environ Sci Technol ; 55(13): 9129-9139, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161066

RESUMO

We present an updated fuel-based oil and gas (FOG) inventory with estimates of nitrogen oxide (NOx) emissions from oil and natural gas production in the contiguous US (CONUS). We compare the FOG inventory with aircraft-derived ("top-down") emissions for NOx over footprints that account for ∼25% of US oil and natural gas production. Across CONUS, we find that the bottom-up FOG inventory combined with other anthropogenic emissions is on average within ∼10% of top-down aircraft-derived NOx emissions. We also find good agreement in the trends of NOx from drilling- and production-phase activities, as inferred by satellites and in the bottom-up inventory. Leveraging tracer-tracer relationships derived from aircraft observations, methane (CH4) and non-methane volatile organic compound (NMVOC) emissions have been added to the inventory. Our total CONUS emission estimates for 2015 of oil and natural gas are 0.45 ± 0.14 Tg NOx/yr, 15.2 ± 3.0 Tg CH4/yr, and 5.7 ± 1.7 Tg NMVOC/yr. Compared to the US National Emissions Inventory and Greenhouse Gas Inventory, FOG NOx emissions are ∼40% lower, while inferred CH4 and NMVOC emissions are up to a factor of ∼2 higher. This suggests that NMVOC/NOx emissions from oil and gas basins are ∼3 times higher than current estimates and will likely affect how air quality models represent ozone formation downwind of oil and gas fields.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Metano/análise , Gás Natural/análise , Campos de Petróleo e Gás , Ozônio/análise
4.
Nat Sustain ; N/A: 1-57, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33134558

RESUMO

Consumer, industrial, and commercial product usage is a source of exposure to potentially hazardous chemicals. In addition, cleaning agents, personal care products, coatings, and other volatile chemical products (VCPs), evaporate and react in the atmosphere producing secondary pollutants. Here, we show high air emissions from VCP usage (≥ 14 kg person-1 yr-1, at least 1.7× higher than current operational estimates) are supported by multiple estimation methods and constraints imposed by ambient levels of ozone, hydroxyl radical (OH) reactivity, and the organic component of fine particulate matter (PM2.5) in Pasadena, California. A near-field model, which estimates human chemical exposure during or in the vicinity of product use, indicates these high air emissions are consistent with organic product usage up to ~75 kg person-1 yr-1, and inhalation of consumer products could be a non-negligible exposure pathway. After constraining the PM2.5 yield to 5% by mass, VCPs produce ~41% of the photochemical organic PM2.5 (1.1 ± 0.3 µg m-3) and ~17% of maximum daily 8-hr average ozone (9 ± 2 ppb) in summer Los Angeles. Therefore, both toxicity and ambient criteria pollutant formation should be considered when organic substituents are developed for VCPs in pursuit of safer and sustainable products and cleaner air.

5.
Environ Sci Technol ; 52(17): 10175-10185, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30071716

RESUMO

In this study, we develop an alternative Fuel-based Oil and Gas inventory (FOG) of nitrogen oxides (NO x) from oil and gas production using publicly available fuel use records and emission factors reported in the literature. FOG is compared with the Environmental Protection Agency's 2014 National Emissions Inventory (NEI) and with new top-down estimates of NO x emissions derived from aircraft and ground-based field measurement campaigns. Compared to our top-down estimates derived in four oil and gas basins (Uinta, UT, Haynesville, TX/LA, Marcellus, PA, and Fayetteville, AR), the NEI overestimates NO x by over a factor of 2 in three out of four basins, while FOG is generally consistent with atmospheric observations. Challenges in estimating oil and gas engine activity, rather than uncertainties in NO x emission factors, may explain gaps between the NEI and top-down emission estimates. Lastly, we find a consistent relationship between reactive odd nitrogen species (NO y) and ambient methane (CH4) across basins with different geological characteristics and in different stages of production. Future work could leverage this relationship as an additional constraint on CH4 emissions from oil and gas basins.


Assuntos
Poluentes Atmosféricos , Óleos Combustíveis , Metano , Gás Natural , Óxidos de Nitrogênio , Campos de Petróleo e Gás
6.
Environ Sci Technol ; 52(13): 7360-7370, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29870662

RESUMO

Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO2). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O3) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O3 standards in the future.


Assuntos
Poluentes Atmosféricos , Ozônio , Óxidos de Nitrogênio , Sudeste dos Estados Unidos , Emissões de Veículos
7.
Science ; 359(6377): 760-764, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29449485

RESUMO

A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)-including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products-now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental , Hidrocarbonetos/efeitos adversos , Compostos Orgânicos Voláteis/efeitos adversos , Poluentes Atmosféricos/análise , Ácido Dioctil Sulfossuccínico , Humanos , Hidrocarbonetos/análise , Estados Unidos , Compostos Orgânicos Voláteis/análise
8.
Nature ; 514(7522): 351-4, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25274311

RESUMO

The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.

9.
Proc Natl Acad Sci U S A ; 109(50): 20280-5, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22205764

RESUMO

During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NO(x) emissions from the recovery and cleanup operations produced ozone.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição por Petróleo , Aerossóis/análise , Aerossóis/toxicidade , Monitoramento Ambiental , Gases/análise , Gases/toxicidade , Golfo do México , Humanos , Modelos Teóricos , Compostos Orgânicos/análise , Compostos Orgânicos/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...